By the end of this section, you will be able to:
- Differentiate between REM and non-REM sleep
- Describe the differences between the three stages of non-REM sleep
- Understand the role that REM and non-REM sleep play in learning and memory
Sleep is not a uniform state of being. Instead, sleep is composed of several different stages that can be differentiated from one another by the patterns of brain wave activity that occur during each stage. While awake, our brain wave activity is dominated by beta waves. As compared to the brain wave patterns while asleep, beta waves have the highest frequency (13–30 Hz) and lowest amplitude, and they tend to show more variability. As we begin to fall asleep, our brain wave activity changes. These changes can be visualized using an EEG and are distinguished from one another by both the frequency and amplitude of the brain wave. The frequency of a brain wave is how many brain waves occur in a second, and frequency is measured in Hertz (Hz). Amplitude is the height of the brain wave (Figure 4.7). Sleep can be divided into two different general phases: REM sleep and non-REM (NREM) sleep. Rapid eye movement (REM) sleep is characterized by darting movements of the eyes under closed eyelids. Brain waves during REM sleep appear very similar to brain waves during wakefulness. In contrast, non-REM (NREM) sleep is subdivided into three stages distinguished from each other and from wakefulness by characteristic patterns of brain waves. The first three stages of sleep are NREM sleep, typically followed by REM sleep. In this section, we will discuss each of these stages of sleep and their associated patterns of brain wave activity.
The content of this course has been taken from the free Psychology textbook by Openstax