4.7.3 Pliocene Hominins

The Pliocene epoch extended from 5 MYA to 1.8 MYA. Fossils from the Pliocene show evidence of the evolution of hominins that are clearly bipedal. They also show evidence of clear, albeit primitive, cultural behavior. Climatically, the Pliocene was colder than the preceding Miocene, which resulted in changing sea levels and an increase in ice at the poles, opening up some previously inaccessible areas. During this period, North and South America became connected through the Isthmus of Panama, and a land bridge across the Bering Strait appeared between Alaska and Siberia.

Ardipithecus ramidus

Ardipithecus ramidus was found in Ethiopia in 1992 by American paleoanthropologist Tim White and was dated to about 4.4 MYA. This is the first discovered hominin species to be dated to the Pliocene era. Based on the forward position of the foramen magnum, it can be concluded that Ardipithecus was bipedal. Also, the upper arm bones are very small, suggesting that the arms were not used to support weight during locomotion. Ardipithecus possesses numerous traits, such as thin dental enamel, evidence of a reduced canine, and an opposable big toe. As a result of the latter trait, many believe that Ardipithecus was bipedal on the ground and quadrupedal in the trees. This hypothesis is supported by the fact that the fossil bones were found in relatively heavily forested environments. The reduced canine is a derived trait appearing even earlier than A. ramidus and is not what we would typically see in African ape males who have large intimidating canines. Current hypotheses suggest that over time smaller canines became dominant when there became less need to show aggression along with a female preference for males with milder temperaments (Suwa, G., et al. 2021).

Partial skeleton laid out on a table. Fewer than a quarter of the bones are present.
Figure 4.32 These skeletal remains have been identified as Ardipithecus, the first hominin species discovered that has been dated to the Pliocene Era. (credit: Sailko/Wikimedia Commons, CC BY 3.0)

The Robust and Gracile Australopithecines

The next few sections will examine various australopithecine species that had diverse physical characteristics related to morphology of the teeth and skull. Based on these characteristics, paleoanthropologists classified these species into gracile and robust forms, as illustrated in Figure 4.33. Gracile species had a more pronounced projection of the jaw (prognathism), less flared cheeks with no sagittal crest, and smaller teeth and jaws. The sagittal crest in the robust australopithecines accommodated large temporalis jaw muscles for chewing tough plant materials.

Two skulls, one identified as “Robust australopithecine” and the other as “Gracile australopithecine.” The Robust specimen has a ridge of bone along the top of the skull, identified as a sagittal crest. The Gracile specimen displays pronounced projection of the face.
Figure 4.33 Australopithecine species are classified as either robust or gracile. A defining feature of the robust species is the sagittal crest visible on the Paranthropus boisei skull on the left. Gracile species, such as A. afarensis, on the right, display more pronounced projection of the face (prognathism). (credit: left, Rama/Wikimedia Commons, Public Domain; right, “Australopithecus afarensis Fossil Hominid (Pliocene, Eastern Africa) 1” by James St. John/flickr, CC BY 2.0)

Species considered to be the gracile include Australopithecus anamensis, A. afarensis, A. africanus, A. garhi, and A. sediba. The robust australopithecines (classified under the genus Paranthropus) include Paranthropus robustus, P. boisei, and P. aethiopicus. The gracile species emerged around 4 MYA and disappeared 2 MYA, while robust species continued to exist for another million years. The next sections will first take a look at some of the gracile forms of australopithecine, followed by the robust forms.

Australopithecus africanus

Australopithecus africanus was the first australopithecine discovered, in 1924, and was described by Australian anatomist and anthropologist Raymond Dart, who found the fossil in a box of fossils sent to him by lime quarry workers at a site called Taung in South Africa. The most notable specimen in the box was a skull from a child, which Dart had to chip away from the stone it was embedded in. It took Dart four years to separate the teeth. The skull is now known as the Taung skull or Taung child. Dart argued that the Taung child represents “an extinct race of apes intermediate between living anthropoids and man” (Wayman 2011). He noted that the skull was long and narrow, not rounded as in modern humans, and its brain averaged a mere 422 cc, equivalent to a chimpanzee. However, the Taung child did not possess brow ridges, had circular orbits, and had minimal prognathism as well as small canines and no diastema (space in the jaw for large canines to be positioned when the mouth closes). These latter traits are all analogous to modern humans. Most importantly, Dart noted that the forward position of the foramen magnum indicated that the skull was poised on top of the vertebral column, suggesting bipedalism and an upright posture.

Partial skull with a number of human-like features, including small canines, minimal projection of the jaw, and no brow ridges.
Figure 4.34 This partial skull is from a specimen known as the Taung child. The species, Australopithecus africanus, displays traits that resemble modern humans in some ways but not others. (credit: Daderot/Wikimedia Commons, Public Domain)

Australopithecus afarensis

In 1973, a good portion of a skeleton (about 40 percent) was found in the Afar region of Ethiopia by American paleoanthropologist Donald Johanson. He called the skeleton Lucy, after a Beatles song. It was dated to around 3.75–2.8 MYA and was determined to be a member of the species Australopithecus afarensis. Like all fossils recently discovered, Lucy was given an identification or accession number, KNM-AL-288. The KNM acronym stands for the Kenya National Museum, where the fossil is housed, and AL stands for the Afar locality where the fossil was found. Since then, more specimens of this species have been found in Kenya, Tanzania, and Ethiopia, all in East Africa.

Young girl standing next to a skeleton that is slightly taller than she is. The arms, fingers, and toes of the skeleton are all much longer than those of a human being.
Figure 4.35 This child stands next to a recreated skeleton of A. afarensis. The long arms and long, curved fingers and toes of A. afarensis are apparent. (credit: “Australopithecus afarensis Fossil Hominid (Lucy Skeleton) (Hadar Formation, Pliocene, 3.2 Ma; Hadar Area, Afar Triangle, Northern Ethiopia, Eastern Africa) 2” by James St. John/flickr, CC BY 2.0)

Australopithecus afarensis is dated from 3.9 to 2.9 MYA with an endocranial capacity of around 400 cc, which is approximately the same as a common chimpanzee. There are two morphological features that provide evidence that A. afarenis moved more like a great ape than a human. First, it had arms that were substantially longer than modern humans’. Long arms are generally found in animals that hang from branches, suggesting that A. afarensis also exhibited this behavior. Also, A. afarensis possesses finger and toe bones that are long and curved, another characteristic of animals that hang from branches. However, there is one important morphological feature of A. afarensis that suggests that this species may have moved somewhat like modern humans. The shape of A. afarensis’s pelvis (hip bones) looks substantially more like a modern human’s than it does an ape’s. Instead of the hip bones being long and narrow, they are short and wide. Most paleoanthropologists believe that this change in pelvic shape indicates that A. afarensis moved like modern humans do, on two legs. While A. afarensis may have locomoted bipedally, the morphological differences between A. afarensis and modern humans suggest they did not move in exactly the same way. Current consensus is that A. afarensis was both tree dwelling and bipedal. Other anatomical evidence of bipedalism includes a more anterior position of the foramen magnum and the angle of the femoral head and neck.

Australopithecus garhi

Also found in Ethiopia, Australopithecus garhi is dated to approximately 2.5 MYA. Its cranial capacity is slightly greater than A. afarensis, at 450 cc. Australopithecusgarhi has incisors that are larger than those of any of the known australopithecines or Homo. The function of the large incisors is not yet known. The most exciting aspect of A. garhi is that it provides evidence of the earliest use of stone tools by a hominin. Specifically, A. garhi fossils were found with fossil bones of ruminants, such as antelopes, that displayed numerous cut marks. Cut marks are made on bones by the process of removing meat from the bones with stone or metal tools. Based on this finding, biological anthropologists have hypothesized that A. garhi used some type of stone tool for butchering.

Australopithecus sediba

In 2008, the clavicle bone of Australopithecus sediba was discovered by Matthew Berger, the nine-year-old son of American paleontologist Lee Berger, in Malapa, South Africa. Further excavation in a cave feature uncovered two partial skeletons, one of an adult female and the other a younger juvenile. A. sediba is considered an important species because it appears in the fossil record around the time of the first emergence of the genus Homo around 2 mya. The classification of A. sediba was initially difficult to determine, due to its complex overlapping features, which include humanlike spine, pelvis, hands, and teeth and a chimpanzee-like foot. This combination of traits suggests both tree climbing and bipedal adaptations. After studying the characteristics collectively, anthropologists classified A. sediba as a species of Australopithecus. It is considered a direct ancestor of Homo erectus and Homo ergaster, which are discussed in Chapter 5, The Genus Homo and the Emergence of Us . It is believed that A. sediba could be a descendent of A. africanus, which suggests the species may be a dead end within the lineage to humans. Its classification and relationship with the genus Homo will likely remain highly debated.

Collection of bones, including a portion of a spine.
Figure 4.36 These bones are from Australopithecus sediba, which displays a humanlike spine and pelvis but a chimpanzee-like foot. (credit: Phiston/Wikimedia Commons, CC BY 3.0)

Paranthropus robustus

Thirteen years after Raymond Dart’s discovery, South African paleontologist and medical doctor Robert Broom discovered Paranthropus robustus at a site called Kromdraai in South Africa. The most obvious difference between Dart’s and Broom’s respective fossils, A. africanus and P. robustus, is that the morphology of Broom’s fossil is much larger. Its features include a sagittal crest and a flared zygomatic arch for the attachment of a large temporalis muscle for chewing a diet reliant on hard nuts and seeds. This interpretation was further supported by scanning electron microscopy (SEM), which was used to evaluate the markings etched into the teeth. As the teeth increased in size the incisors and canines shrank, giving Paranthropus a flatter face with less projection of the jaw. There are some who argue that depending on the environment and locale, some Paranthropus may have been omnivores, with varied diets similar to those of H. ergaster. (Lee-Thorp, Thackeray, and van der Merwe 2000).

Paranthropus boisei

Following in Broom’s footsteps, other scientists began searching for fossils in East Africa. Beginning in 1931, Kenyan and British paleoanthropologist Louis Leakey and his wife, Mary Leakey, worked in what is known as the Eastern Rift Valley, which is a 1,200-mile trough extending through Ethiopia, Kenya, and Tanzania. They searched for almost 30 years before they found their first hominin fossil, Paranthropus boisei (OH-5)—originally classified as Zinjanthropus boisei—in 1959. It is often referred to as the hyper-robust hominin because of its mohawk of bone on the top of the skull. Other features include a low or absent forehead, a flat face, large jaws, and large attachment sites over the entire skull for chewing muscles.

Paranthropus aethiopicus

We have little knowledge about Paranthropus aethiopicus (shown in Figure 4.37), which has been dated to about 2.5 MYA and is referred to as the “black skull.” It is believed that this species falls somewhere between the robust and gracile australopithecines, having characteristics of both. The species was discovered in Ethiopia in 1967 by a French expedition team headed by Camille Arambourg and Yves Coppens.

Partial skull displaying a pronounced sagittal crest, brow ridges, and large eye sockets
Figure 4.37 Much remains to be learned about Paranthropus aethiopicus, which has characteristics of both the robust and gracile australopithecines. (credit: “Paranthropus aethiopicus (Fossil Hominid) (Nachukui Formation, Upper Pliocene, 2.5 Ma; Lomekwi, Lake Turkana Area, Kenya) 3” by James St. John/flickr, CC BY 2.0)

The content of this course has been taken from the free Anthropology textbook by Openstax